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Abstract

In recent times, Wireless Sensor Networks have been a major topic of research, due

to their wide domain of applications. Wireless Sensor Networks can be deployed in an

area under surveillance for continuous monitoring. However, sensor nodes are heav-

ily constrained, in terms of energy and computational power. This discourages the

use of centralized algorithms for such networks, as the robustness of the system is

compromised. This work focuses on techniques for distributed deployment of sensor

nodes for achieving coverage, which is an important performance metric for sensor

networks. Two different distributed approaches have been taken for two types of cov-

erage; namely Area and Target coverage. For the problem of Area Coverage, a game

theory based approach is used which treats the sensors as self-interested agents try-

ing to maximize their local objective functions. For the problem of Target Coverage,

a special graph structure is used to maintain connectivity and achieve coverage for a

single target, and then it is extended to multiple targets.
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Chapter 1

Introduction

Wireless Sensor Networks are a collection of sensors, that have the task of monitoring

of some parameter in the environment, such as temperature, pressure, humidity etc.

usually in a distributed manner. These sensors, apart from their sensing abilities have

various other capabilities which help them perform this task. They have some compu-

tation power, though limited, which allows basic processing of the sensed data. They

have locomotive abilities, which allows them to deploy themselves according to the

objective they wish to achieve collectively. Another important characteristic of these

sensor nodes is the ability to communicate, either within themselves, or with a base

station, which allows them to exchange information regarding their position as well as

the sensed data.

Sensor networks find application in a broad spectrum of areas including military, health-

care, surveillance and industry. A few examples of application of sensor networks can

be noted as follows:

• They can be deployed in disaster relief operations to monitor the degree of haz-

ard. For example, measuring the mechanical stress of buildings after an earth-

quake.

• They can be used for precision agriculture by monitoring the amount of fertiliz-

ers and pesticides in the soil, and sending proper signals when there is need.

• They find application in health-care for long term surveillance of chronically ill

patients or post-operative period through wearables.

• They help in reducing energy wastage by measurement and control of humidity,

ventilation and air-conditioning.

• They can be used to monitor points of interest on a periodic basis.

1



Introduction 2

1.1 Structure of Wireless Sensor Networks

A widely accepted model that describes Wireless Sensor networks is defined below.[1]

Let there exist n nodes in the network. The set N = 1, 2, 3, ..., n denotes the indexes

of the nodes of the system. The set T denotes the set of time instants when snapshots

of the system are taken.

• There exists a placement function P , such that P : N × T → [0, l]d where [0, l]

denotes the range of the domain towards a coordinate axis, and d denotes the

dimension of the space in which the sensors are placed. In this work, the values

of d are taken as 1 and 2.

• There exists a sensing range function S, such that S : N → si where si de-

notes the radius up to which a sensor can sense data with reasonable accuracy.

In order to cover a target, the sensor must be at a distance less than the sensing

radius from the target.

• There exists a communication range function R, such that R : N → ri where

ri denotes the radius up to which a sensor can transmit data with reasonable

accuracy. This distance is calculated based on the largest δ that satisfies the in-

equality defined by [2]
pi
δα
≥ β

Here, pi denotes the transmitting power of the ith sensor node. α is the trans-

mission power gradient and is set to 2 for ideal situations and 4 for real situa-

tions. β refers to the transmission quality and is usually set to 1.

• Finally exists is the communication graph, G, defined as G = (N,E(t)) where at

any t ∈ T , there exists an edge [i, j] if and only if d(i, j) ≤ ri and d(j, i) ≤ rj

where d(i, j) = d(j, i) and is the euclidean distance between the two nodes. The

graph G is undirected in usual practice, i.e., [i, j] ∈ E(t)⇔ [j, i] ∈ E(t).

There are some inherent weaknesses in this model. The assumption of a uniform ra-

dial coverage does not hold true for most real applications in the presence of obsta-

cles. The sensing and communication radii are susceptible to external environment

factors and interference from other nodes. However, incorporating these facts into the

network model makes it difficult to perform simulations and generate general results.

Thus, the above described model is widely used for analysis and simulation studies of

wireless sensor networks.
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1.2 Coverage in Wireless Sensor Networks

Coverage is Wireless sensor networks can simply be thought of as a metric, that mea-

sures how well the area under surveillance is being monitored. It determines the Qual-

ity of Service (QoS) of the deployed network, and tries to find weak points in the cur-

rent configuration, i.e., the areas that are currently not being monitored properly.

This can help in formulation of strategies for future deployment schemes.

There are mainly two notions of coverage which are discussed below:

• Physical Coverage: Under this notion, a point is said to be covered, if it lies

within the sensing radius of any of the sensors deployed in the field. The mini-

mum euclidean distance of the desired point from nearby sensors (or all) is cal-

culated, and if it falls below the sensing radius of the corresponding sensors, it is

said to be covered.

A variant of this notion is k-coverage, where the k smallest distances are cal-

culated, all of which should be less than the sensing radii of the corresponding

sensors. This is important, as sensors are generally energy constrained, and are

often prone to failure. Having k sensors monitoring each point brings robustness

to the system.

• Information Coverage:[3] Under this notion, a point can be covered, even if it

is not within the sensing radius of any of the sensors. As from the definition of

sensing radius, it is the distance up to which a sensor can sense with reasonable

accuracy. Beyond this radius, the proportion of noise in the data exceeds the

acceptable threshold, making it difficult to recover the data. However, if multi-

ple sensors sense the same data, with varying degrees of noise affecting the data,

then the mean of the data from all these sensors can give a fairly accurate esti-

mation of the actual parameter.

This is explained by the Central Limit Theorem, which states that the arith-

metic mean of N independent random variables, each having a finite mean and

variance, converges into a normal distribution. Under added conditions of the

random variables be identically distributed as a normal distribution with mean

µ and variance σ2, the resulting mean is a normal distribution with mean µ and

variance σ2/n. Thus, as the variance decreases, the uncertainty in the measured

data reduces, allowing for accurate measurement of the parameters through col-

laboration of multiple sensors.

Physical coverage can be classified into three major schemes, namely Area, Target and

Path Coverage.[4]
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1.2.1 Area Coverage

This Coverage aims to maximize the total area that is monitored by the sensors in

the field where they are deployed. It is inspired from the Circle Coverage Problem,

where the aim to place a set of circles in a plane, with the aim to maximize the union

of areas that fall under the circles. The problem can be formally defined as follows:[5]

maximize

 k∪
i=1

ni+1−1∪
j=ni

Cri(xj , yj) ∩A


subject to (xi, yi) ∈ A, i = 1, 2, ..., n

(1.1)

The equation is explained as follows. The aim is to maximize the coverage of the do-

main A. There are k types of sensors, where each type has a sensing radius ri and

there are ni number of each type. The coverage by the jth sensor of the ith type is

given by the intersection of its sensing area with the domain. The total coverage is

given by the union of all the individual coverages. An illustration for the problem is

shown in Figure 1.1:

Figure 1.1: Modeling of the Area Coverage Problem

1.2.2 Target Coverage

Given a set of targets in the sensing field with known locations, the objective of this

problem is to find a placement strategy such that all the targets are covered using the

minimum number of sensors possible. It is inspired by the Art Gallery Problem, where

the aim is to place minimum number of cameras to make the gallery thief-proof, by

ensuring that all the displays are monitored by at least one camera.
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There are two variants to this problem. In the first case, when the distances between

the targets are comparable to the sensing radii, the problem becomes equivalent to

that of the Maximum Set Cover (MSC), which can be defined as selecting k sets from

a given number of sets with the aim of maximizing the total cardinality of the sets.

It is a classical problem of computer science. An illustration of this formulation is de-

picted below in Figure 1.2:

Figure 1.2: Modeling of the Target Coverage (MSC) Problem

In the other case, when the sensing radii are much smaller than the inter target dis-

tances, it becomes important to devise placement strategies which ensure connectivity

between the sensors, so that the information can be propagated to the desired destina-

tion.

1.2.3 Barrier Coverage

The goal of this coverage problem to prevent undetected penetration through a bar-

rier. It is inspired from the Robotic systems coverage, which has a similar objective. A

variant of this is the sweep coverage, where the barrier is mobile in nature.

1.3 Distributed Deployment

There are two classes of algorithms, centralized and distributed, which are briefly ex-

plained:

• Centralized: These class of algorithms are dependent on a central node, which

is much powerful compared to the other nodes. It has the responsibility of run-

ning the algorithm and processing the data that it receives from other nodes,
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and then transmit the same back to the nodes, allowing them to take respective

actions. The advantages of this class of algorithms is the processing power of

the central node, which allows for complex calculations to be done faster. Also,

centralized algorithms are relatively simpler compared to their distributive coun-

terparts. However, centralized algorithms suffer from certain drawbacks. A ma-

jor one of them is the heavy reliance on the central node by the other nodes. If

this node fails, the entire system comes to a standstill. Also, communication re-

quirements are excessive for these type of algorithms, as all the data needs to be

transmitted back and forth to the central node.

• Distributed: These class of algorithms do not require any central node. Each

node can compute its part of the algorithm and take decisions based on it. For

this purpose, it can communicate with sensors within its communication radius.

These systems are more robust and more energy efficient compared to central-

ized systems. However, design of these algorithms are more challenging, with

issues like constraints on computation power, synchronization etc.

Also there are two classes of sensors, mobile and immobile. Immobile ones are those

which have no locomotive capability. So for placing these sensors, their optimal lo-

cations need to computed in advance, and the sensors be placed at those locations.

These systems are not very effective in disaster intervention, or unmanned applica-

tions. Another type are the mobile sensors, which can move from one point to an-

other. These sensors can either be dropped from the sky, or released from a base sta-

tion, from where they can deploy themselves to achieve coverage based on either a

centralized or a distributed algorithm.

1.4 Focus of this work

This work is aimed at the distributed deployment of mobile sensors, for achieving var-

ious types of coverage. Firstly, the problem of area coverage is considered, and using

the approach of a state based potential game, a heuristic for distributed deployment is

developed. Next, the problem of target coverage is considered, where the aim is to de-

ploy sensors to several target locations while maintaining connectivity with a base sta-

tion. This is achieved by considering a special graph structure over the sensor nodes.



Chapter 2

Area Coverage

A multi-agent system is defined as a set of independent agents having local objective

functions which they seek to achieve. The class of optimization procedures that re-

volve around multi-agent systems aim to design these local functions such that the

resulting global behavior is in accordance with the desired system objective. This

process requires two steps, the first one being defining proper local objective func-

tions which satisfy the above criteria, and second, designing a distributed algorithm

which allows these agents to achieve these objective functions. Game theory is an

effective tool in this process, as using a specific class of games, this process can be

decoupled.[6]

The model of sensor networks, stated in the previous chapter, can be thought of a

multi-agent system. In this process, the system level objective of coverage needs to be

modified into local functions which can contribute towards a desired global behavior.

The system level objective here, is the problem of area coverage, as defined in section

1.2. The aim is to maximize the coverage of the area in the domain given a set of sen-

sors, with a fixed sensing and communication radii. For the maximization problem to

be solvable through convex optimization algorithms, the function should satisfy con-

vexity property.

2.1 Problem Formulation

For the ease of implementation, coverage in only one dimension is considered in this

application. The objective function ϕ is defined below. The set [x1, x2, ..., xn] denotes

the coordinates where the sensors are currently placed. the sensing radii is given by

si. The domain is represented by an array A of size N , initialized to 0’s. Coverage by

7
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a sensor is given as 1[xi − si, xi + si], where 1 is the indicator function, turning the

corresponding array element to 1.

ϕ(x1, x2, ..., xn) =

∑N
i=1A[i]

N
(2.1)

To determine the convexity of this function, a simulation was performed for just two

sensors trying to cover a domain. The plot obtained from the simulation is shown be-

low:

Figure 2.1: Plot of Coverage function for 2 variables

Consider the Figure 2.1. There appear to be multiple peaks, contradicting the notion

of a concave function. But carefully looking, if we consider the a subset of the domain,

either [x1 > x2], or [x1 < x2], we find that in these subsets, the function is strictly

concave. Moreover, looking carefully, we find that each of those peaks is a permuta-

tion of one another, and has the same peak value. So, once the function is initialized

at some random point, the current point on the domain shouldn’t go out of the sub-

set it is allotted. In other words, the order should be maintained, i.e., in the process of

optimization, no point should jump over any other point. This ensures that the func-

tion eventually falls into the local maxima in its subset, thus implying the reachability

of the global maxima.

In order to design the local objectives which satisfy the desired global behavior, we

use a specific kind of game, called the State Based Potential Game, where the aim for
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each of the agent is to maximize or minimize its local objective function, which is de-

signed in a manner to satisfy a global potential function.

2.2 State Based Potential Game

For a multi-agent system of N agents, a State Based Game is a particular class of

games, where exists an underlying state space X. All agents i ∈ N have a state depen-

dent set of actions, denoted by Ai(x), ∀x ∈ X. Also, the local objective functions are

state dependent, given as Ji : X × A → R, where A =
∏

iAi and Ai =
∏

xAi(x). The

state changes are determined through a transition function given as f : X ×A→ X.

A subset of the class of State Based Games is the State Based Potential Games, where

the local objective functions are defined as to satisfy a global potential function.[7]

Mathematically, it can be described as follows. Assume the existence of a global po-

tential function ϕ : X × A → R. The design of the game should be such that for every

state action pair [x; a] ∈ X ×A:

• For any player i ∈ N and action a′i ∈ Ai(x)

Ji(x; a
′
i; a−i)− Ji(x; a) = ϕ(x; a′i; a−i)− ϕ(x; a) (2.2)

• The potential function satisfies ϕ(x; a) = ϕ(x̃; 0) where x̃ = f(x; a).

Assume a State Based Potential Game with global function ϕ. A single state equilib-

rium is reached for the state-action pair [x∗; a∗] if [x∗; a∗] satisfies a∗ = argmina ∈
A(x)ϕ(x∗; a). If [x∗; a∗] also satisfies x∗ = f(x∗; a∗), then [x∗; a∗], then it is said to be

a recurrent state equilibrium.

2.3 Design of the Game

There are various components of the State Based Potential Game which is applied to

the problem of area coverage. This game was designed by Li and Marden.[8] Details

are followed in the next subsections.

2.3.1 State Space

The state space X, is the set of all states x. Each state x is defined as a tuple x =

(v; e;G), where v = (v1, ..., vn) ∈ Rn is a vector which determines the values that each
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node has taken. e = (e1, ..., en) is the matrix of estimation terms, where each ei =

(e1i , ..., e
n
i ) ∈ Rn is a vector of estimation of the value profile by the agent i. The term

eki is agent i’s estimation of agent k’s value vk. G is the undirected communication

graph, pertaining to the sensor network model discussed in the previous chapter. It is

represented as a vector Ni for agent i.

In context of this application, the value profile is nothing but the coordinates occupied

by the sensor nodes. The estimation matrix is the estimate of the position of the sen-

sors by other sensors. These estimations may be correct, or may not be correct. But

in order to reach equilibrium, the sensors must tend to increase the accuracy of their

estimates.

2.3.2 Action Sets

The set of actions for a State Based Game is state dependent, denoted by Ai(x). These

actions allow the agents to change their values as well estimates of other nodes through

communication with agents they are connected to, i.e., those with which they share an

edge in G. The action of an agent i is defined by the tuple ai = (v̂i; êi) where v̂i ∈ R
is the change in the agent’s value vi. êi := {êki→j}

k∈N
j∈N is the change in the agent’s

estimation terms ei where êki→j ∈ R is the term which represents the part of the es-

timation that player i passes to j regarding to the value of player k. It is to be noted

that êki→j = 0, ∀j /∈ Ni, k ∈ N , as a node is only allowed to communicate only with the

nodes in its neighborhood.

A change of value in this application implies that the agents move an equal distance,

to a new position, with an aim to improve their local objective. The estimates change

with the aim of making the estimations more accurate.

2.3.3 State Transition Rules

• The transition of the value profile v is captured by the local state transition rule

of the form:

P v
t (x, a) = P v(x, a) = {vi + v̂i}i∈N (2.3)

• The transition of the estimation profile e is captured by the local state transition

rules of the form:

P e
t (x, a) = P e(x, a) = {eki + nδki v̂i + ěki }i,k∈N (2.4)

where ěki =
∑

j∈Ni
êkj→i −

∑
j∈Ni

êki→j and δki is the indicator function.
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• The state transition for G is mathematically defined as PG
t : X × A → ∇(Ḡ)

at each time t. Here Ḡ is the set of all undirected communication graph and

∇(Ḡ) is the set of probability distributions over this set. For this application,

the graph is redrawn after every movement to incorporate the changes causes by

the latest movement.

2.3.4 Invariance Property

Let v(0) = (v1(0), ..., vn(0)) be the initial values of the agents. The estimates e(0)

initially should satisfy
∑

i∈N eki (0) = n · vk(0) for each agent k ∈ N ; thus, making the

initial estimations dependent on the initialized values. This condition can trivially be

satisfied as we can set eii(0) = n ·vi(0) and eji (0) = 0 for all agents i, j ∈ N where i ̸= j.

Looking at the state transition rules, we realize that a new estimation is created only

when an agent moves v̂i, and the amount of estimation created is n · v̂i, thus it’s safe to

say that the following condition is satisfied. It can be described as, ∀t ≥ 1 and j ∈ N,:

n∑
i=1

eki (t) = n · vk(t) (2.5)

2.3.5 Global Potential Function

Since for any State Based Potential Game, there exists a global function which gives a

desired system behavior, designing such a global function is the key to choosing local

objective functions compliant with the rules of the game. The function can be defined

as Φ : X ×A→ R:
Φϕ(x, a) = Φϕ(x, a) + α · Φx(x, a) (2.6)

where

Φϕ(x, a) =
∑
j∈N

ϕ(ẽ1j , ẽ
2
j , ..., ẽ

n
j ) (2.7)

Φx(x, a) =
∑
j∈N

∑
k∈N

(ẽkj )
2 − n ·

∑
j∈N

(ṽj)
2 (2.8)

ṽ = P v(x; a) and ẽ = P e(x; a).

This satisfies the property of Potential Games discussed in the previous section. Also,

it’s seen from the definition of the function that it is convex in nature, given that ϕ is

also chosen to be convex. Since it is convex, as shown in the section 2.1 (actually 1−ϕ

is convex, but that is a trivial fact), it is an appropriate function for an optimization

problem.
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2.3.6 Agent Cost Functions

Now that we have a global potential function, the local objectives can be picket out

by taking the components from the global functions that are of concern to a a local

agent. Following the lines of the global function, the local objective is of the form

Ji(x, a) = Jϕ
i (x, a) + α · Je

i (x, a) (2.9)

where Jϕ
i (·) represents the component related to the objective function, which in our

case is already defined in section 2.1; Je
i (·) represents the component based on the

state x; and α is a which trades off the two components, giving proper weightage to

both the components. The definition of each of the components is as follows: for any

state x ∈ X and action profile a ∈
∏

i∈N Ai(x) :

Jϕ
i (x, a) =

∑
j∈Ni

ϕ(ẽ1j , ẽ
2
j , ..., ẽ

n
j ) (2.10)

Je
i (x, a) =

∑
j∈Ni

∑
k∈N

(ẽkj )
2 − n(ṽi)

2 (2.11)

where ṽ = P v(x; a) and ẽ = P e(x; a).

2.3.7 Nash Equilibrium

A state action pair [x; a] := [(v; e;G); (v̂; ê)] for the above mentioned game is declared

as a stationary Nash equilibrium in the game if and only if the following conditions

hold:

• The value vector v is optimal;

• The estimation matrix e satisfies the condition eki = vk, ∀i, k ∈ N ;

• The change in value vector satisfies the condition v̂i = 0, ∀i ∈ N ;

• The change in estimation matrix satisfies the condition êki→j = 0, ∀i, j, k ∈ N .

2.3.8 Application to Area Coverage

The problem is modeled as taking a large array of integer coordinates, and placing

sensors randomly on some of the coordinates. Each sensor has a predefined sensing ra-

dius and a communication radius. The sensors can cover the area left and right to it
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within its sensing radius, and can exchange information with sensors within its com-

munication radius. The initialization of the algorithm is done randomly, in accordance

with the invariance property. Thus initially, every sensor has a nil estimate of the po-

sitions of the other sensors.

Since the ϕ defined in section 2.1 is the coverage we try to maximize, for the mini-

mization problem we choose the objective as 1− ϕ. On every iteration, the sensors try

to correct their positions by trying to minimize their local objective functions, as given

by a distributed algorithm. It is noteworthy that this minimization is based on their

estimates of the location of other sensors, and not the actual locations of the other

sensors. The sensors also exchange information about their estimates with other nodes

within their communication radius, with an attempt to improve their estimates of the

location of the other sensors.

2.4 Distributed Algorithm

Since the State Based Potential function ϕ(x; a) is convex over a = (v̂; ê), each of

the agents can use a gradient descent algorithm to reach the minima of their local

objectives. When all the agents do this, it ensures that the system-wide minima is

obtained, and thus, this leads to a distributed algorithm where each self interested

agent behaves independently of others. The gradient descent algorithm for the agent i

is given as follows:

1. Each agent i can be initialized randomly as vi(0) and further set eii = n · vi(0)
and eki (0) = 0 ∀k ̸= i in accordance to the invariance property. Set t = 0;

2. At each time t ≥ 0 the action ai(t) = (v̂i(t); êi(t)) selected by each agent i given

the state x(t) = (v(t); e(t);G(t)) is:

v̂i(t) =

[
−ϵ · ∂Ji(x(t), a)

∂v̂i

∣∣∣∣
a=0

]+
=

[
−ϵ · ∂Ji(x(t), a)

∂ẽi
× ∂ẽi

∂v̂i

∣∣∣∣
a=0

]+
=

[
−ϵ(nϕi|ei(t)

+ 2nα(eii(t)− vi(t)))
]+
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êki→j(t) = −ϵ ·
∂Ji(x(t), a)

∂êki→j

∣∣∣∣
a=0

= −ϵ · ∂Ji(x(t), a)
∂ẽi

× ∂ẽi

∂êki→j

∣∣∣∣
a=0

= ϵ(ϕk|ei(t)
− ϕk|ej(t)

+ 2α(eki (t)− eji (t)))

where [·]+ represents the projection onto the closed convex set Av̂
i (x). This pro-

jection in this formulation is the nearest integer in the permissible set, as the co-

ordinates can only be integers. ϵ is the step-size of gradient descent. Since each

agent i can select its own action using local information, the algorithm is truly

distributed in nature. Note that ϕk|ei(t)
is given by ∂ϕ(ei)

∂eki
.

3. The state transitions to (vi(t + 1); ei(t + 1)) are done in accordance to the State

transition rules discussed earlier. These depend only on local information. The

communication graph G(t) is realized according to PG
t .

4. Increase t by 1 and return to step 2.

As the algorithm proceeds, the estimation of the sensors, regarding the location of

other nodes improves and tends to be more accurate. The sensors tend to adjust their

locations as to reach a local minima (which as a result of the potential function to be

the global minima). The algorithm is said to have fully converged, when the percent

coverage reached a threshold as specified by the user. Thus by the game theoretic ap-

proach, at this, point, all the agents have the proper estimates of all other nodes, as

well has they have minimized their local objective functions.

2.5 Simulation and Results

Various simulations were run with varying parameters for the 1D coverage problem. A

few sample results have been shown as follows. The plots of coverage, position dynam-

ics, and the estimation of a particular sensor made by all the sensors over a period of

time. Also, the final location arrays and estimation matrices are listed.

Specifics of the simulation:

• Number of sensors: 5

• Sensing Radii: [25-30]

• Communication Radii: [40-75]
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Figure 2.2: Plot of Coverage with iterations for various communication radii

Figure 2.3: Plot of Location dynamics with iterations

Final Location Array: ∣∣∣ 248 152 93 204 31
∣∣∣

Final Estimation Matrix:∣∣∣∣∣∣∣∣∣∣∣∣∣

248.0981 147.7525 90.9995 203.2841 32.5532

248.0291 165.7453 88.7874 202.4950 31.6493

247.9728 150.1231 96.4998 205.3793 27.6439

247.9233 147.5169 88.9461 204.5720 31.1855

247.9766 148.8622 89.7672 204.2697 31.9680

∣∣∣∣∣∣∣∣∣∣∣∣∣
As it can be seen from Figure 2.2, coverage is almost achieved, with some margin of



Area Coverage 16

Figure 2.4: Plot of Estimates by the sensors for a sensor

error. The plot focuses on the trend when the communication radii is changed. As it

increases, each of the sensors can interact with more agents, exchange information and

reach convergence faster. For lower radii values, this process takes more time, and can

often fall into loopholes where it gets isolated and can’t achieve convergence at all.

Figure 2.3 shows the location dynamics, i.e., how the sensors change their position

with time in order to achieve convergence. As seen, initially the sensors move very

quickly due to rapid changes in values as their estimations are very wrong about other

sensors. As this corrects with time, the sensors move on towards correct positions that

will help them achieve maximum coverage.

Figure 2.4 shows how the estimates of all the sensors about a particular node change

with time. The estimations start in accordance to the invariance property, and as the

estimations get accurate, they converge on to the true value of the corresponding sen-

sor.

For a particular simulation, the value vector v and the estimation matrix e are also

listed. It can be seen that within limits of some error, the first two conditions of Nash

Equilibrium is satisfied, which suggests that convergence has been achieved within an

allowable limit of error.



Chapter 3

PoI Coverage with connectivity

Moving from the problem of Area Coverage, another issue is PoI(Point of Interest), or

Target coverage, as discussed under various types of coverage. PoIs are of importance,

because in certain scenarios, sensing the entire field is not important. The formaliza-

tion of the problem is defined as follows:

Given a domain A, there are various PoIs scattered throughout the domain. There

exists a base station, which acts as the starting point for all the sensors. Once the sen-

sors are released, they must deploy themselves in a distributed manner, and ensure

two criteria in doing so:

• All the PoIs should be covered by at least one sensor each.

• The sensors should maintain connectivity amongst themselves such that all the

PoIs remain connected to the base station.

Firstly we consider the case of one PoI, and then move on to multiple PoIs. The aim

here is to design a deployment strategy as to cover the PoI while ensuring that the

sensors are connected with each other.

From the structure of sensor networks, as discussed earlier, we know that there exists

an underlying graph structure for the nodes. Connectivity in sensor networks is en-

sured if the underlying graph is connected. There are a lot of connected graphs in lit-

erature, such as the Minimum Spanning Tree(MST), Relative Neighborhood Graph(RNG),

Gabriel Graph(GG), Complete Graph(CG) etc. Moreover, any tree is a connected

graph. The choice of the graph should be such that it minimizes the number of sen-

sors required to cover the given PoI. For this purpose, we consider the concept of length

stretch factor.

17
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3.1 Length Stretch Factor

Let G = (V,E) be a graph defined on an n-vertex set V with and edge set E. The dis-

tance in G between two vertexes u, v ∈ V is total length of the shortest path between

u and v and is denoted by dG(u, v). A subgraph H = (V,E′), where E′ ⊆ En is a t-

spanner of G if for every u, v ∈ V , dH(u, v) ≤ t × dG(u, v). The value of t is called the

Length Stretch Factor.[9]

Ideally for this application, a graph is desired whose Length Stretch Factor is as large

as possible. During the course of the algorithm, the graph will be redirected and stretched

while maintaining connectivity. This will cause the graph to continuously evolve and

spread out. Eventually, the goal is to transform the graph into a state which contains

a path with O(n) hops, which ensures maximum stretching out. It was shown in [10],

that for a Relative Neighborhood Graph, the Length Stretch Factor is of the order

Ω(n), while for a β-skeleton for β ∈ [0, 2] (RNG is a 2-skeleton), the maximum Length

Stretch Factor can be n − 1. For various other graphs, such as Gabriel Graph, the

Length Stretch Factor is of the order of Ω(
√
n), which is obviously suboptimal. Thus,

This makes RNG a suitable choice for this application.

3.2 Relative Neighborhood Graph

The Relative Neighborhood Graph (RNG) was first discussed by Godfried T. Tou-

ssaint [11]. RNG is a connected graph. The connections in RNG leads to a graph

which extracts a “perceptually meaningful structure” from the set of points. The RNG

can be formally defined as:

Consider a set V of n distinct points in a plane: V = 1, 2, 3, ..., n. Two points u and v

can be defined as relative neighbors, if d(u, v) ≤ max[d(u,w), d(w, v)] ∀w = 1, 2, ...., n,

w ̸= u, v. The Relative Neighborhood graph is constructed by forming edges between

u and v if they are relative neighbors ∀u, v = 1, 2, ..., n and u ̸= v.

Figure 3.1 depicts the set of points in space where a node w can not exist, if nodes u

and v are relative neighbors. Let δ = d(u, v) denote the Euclidean distance between

the nodes. Firstly, δ ≤ ru and δ ≤ rv for an edge to exist between these two nodes,

where ru and rv are the communication radii of these nodes. Now, consider circles of

radius δ being drawn around each of the nodes u and v. The interior of each circle de-

notes the locus of points whose distance is smaller than δ. By the definition of RNG,

any point w that lies inside the intersection of these interiors, depicted by the shaded

region satisfies the criteria d(u, v) ≤ max[d(u,w), d(w, v)], and thus wipes out the edge
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Figure 3.1: Relative Neighbor Illustration

that existed between u and v. Thus, u and v are relative neighbors, then there can

not exist any point w inside the shaded region.

A basic algorithm for calculating RNG is described:

Algorithm 1 Basic RNG computation

edge← 0[n× n]
for all u, v = 1, 2, ..., n do

d(u, v)← ∥(p(u)− p(v)∥2 {p(u) denotes the position of the sensor}
end for
for all u, v = 1, 2, ..., n do

for all w = 1, 2, ..., n do
dwmax ← max[d(u,w), d(w, v)]

end for
end for
for all u, v = 1, 2, ..., n do

for all w = 1, 2, ..., n do
Search for dwmax ≤ d(u, v)

end for
if No such w exists then

edge(u, v)← 1
end if

end for
return edge

This algorithm is O(n3). This makes it a bad choice for implementation, even though

its straight forward and can be easily implemented using local information as each

node requires only one one-hop distances for computing its edges to neighbor sensors.

Another algorithm was proposed by Toussaint, which uses the concept of Delaunay

triangulation, which is discussed below.
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3.2.1 Delaunay Triangulation

Given a set of points V , a Delaunay Triangulation of the nodes is a construction of a

set of triangles over the given set, such that the circumcircles of none of the triangles

contains another node in its interior. Delaunay triangulations tend to avoid small an-

gle triangles, as these have higher chances of including other nodes in their interior.

An interesting aspect of Delaunay Triangulation is its relation to the Voronoi diagram,

which is a partition of the given domain into a finite number of sets, such that the set

enclosing a given vertex v is the set of all points in the domain which are the nearest

neighbors of v. Delaunay Triangulation is simply the dual of the Voronoi diagram, and

can be constructed by joining the pair of vertexes which are bisected by the lines of

the Voronoi Diagram. An Illustration in Figure 3.2 helps to visualize:

Figure 3.2: Relation between Voronoi and Delaunay

There are various algorithms for computing Delaunay Triangulation:

• Flipping: The Delaunay condition says that if two triangles share a common

edge, then the sum of opposite angles should be greater than 180◦. If the con-

dition is not met, then flipping the common edge ensures that the condition is

met. Number of edges is O(n2), and thus an algorithm with O(n2) can be con-

structed with creating any triangulation and flipping all edges till all triangles

are Delaunay.

• Incremental: In this technique, one vertex v is added to the triangulation in

each iteration. The triangles which contain the vertex v are searched for, which

are divided into three parts, and then flip algorithm is applied to it. Considering

the time complexity, this algorithm also runs in O(n2) time.
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• Divide and Conquer: This algorithm first divides the given points into a num-

ber of small sets. The Delaunay Triangulation of these points are näıvely com-

puted. These small triangulations can then be merged together in O(n) time,

giving an overall complexity of O(nlogn).

• There are some other algorithms like the Sweep-line Algorithm which runs in

O(nlogn) time.

A theorem given by Toussaint concerning the relation between Relative Neighborhood

Graph and Delaunay Triangulation is stated below:

Theorem 3.1. The Relative Neighborhood Graph(RNG) is a subset of the Delaunay

Triangulation(DT).

Proof. Consider Figure 3.3, a and b are the points having an RNG edge. Since they

are relative neighbors, the region R can not contain any other point. For RNG to be

a subset of DT, a and b must have an edge in the DT too. For this, the length of the

bisector of a and b must have a non zero length. Consider the points c and d. The

intersection of the bisectors of c − a and a − d with that of a − b reduces the length

of bisector of a − b. But, this length can never be zero, no matter how close c and

d are to a, because they lie on a circle and the angle will be non-zero, however small

though. Thus the existence of a bisector in the Voronoi diagram confirms the presence

of an edge in the DT. Thus, RNG is a subset of DT.

Figure 3.3: Illustration for proof of Theorem 3.1

3.2.2 Faster Algorithm for RNG Computation

Toussaint gave another algorithm for computation of RNG, based on this theorem,

which runs in O(n2) time. The algorithm restricts the search space for edges of RNG

to that of Delaunay only.
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Algorithm 2 Fast RNG computation

Compute the Delaunay Triangulation for the set V of nodes.
edge← 0[n× n]
for all u, v = 1, 2, ..., n do

d(u, v)← ∥(p(u)− p(v)∥2 {p(u) denotes the position of the sensor}
end for
for all u, v such that (u,v) is an edge of DT do

for all w = 1, 2, ..., n do
dwmax ← max[d(u,w), d(w, v)]

end for
end for
for all u, v such that (u,v) is an edge of DT do

for all w = 1, 2, ..., n do
Search for dwmax ≤ d(u, v)

end for
if No such w exists then

edge(u, v)← 1
end if

end for
return edge

This algorithm uses the fact that RNG is a subset of Delaunay Triangulation, and

thus any edge of RNG is also an edge of DT. So, the search for edges of RNG is re-

stricted to the edges of DT. The Delaunay Triangulation can be efficiently calculated

in O(nlogn) time, as discussed in the previous section. The Delaunay Triangulation

results in O(n) edges, which reduces the search space from O(n2) pair of points to

O(n). As a result, the overall complexity of this algorithm is O(n).

3.3 Urquhart Graph

Consider three nodes from the set V , namely u, v and w. Let us claim that if an RNG

is formed on V , there can not exist a triangle between the nodes u, v and w. To see

this, without loss of generality, assume edge lengths are ordered as (u, v) ≤ (v, w) ≤
(u,w). This contradicts the Relative Neighbor condition, that (u,w) ≤ max[(u, v), (v, w)].

Thus, an edge can not exist between u and w.. Thus, the triangle can not be formed.

Incorporating this idea into the Delaunay Triangulation leads to a graph structure

that is called the Urquhart Graph[12], proposed as an O(nlogn) algorithm for comput-

ing the Relative Neighborhood Graph.

The basic idea of the Urquhart graph is that RNG is a subset of Delaunay Triangula-

tion, and since no triangles can exist in a RNG, removing the longest edge from each

of the triangles in Delaunay Triangulation ensures the relative neighbor condition for
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all the points in V . However, in [13], Toussaint provided a counter example, which

showed that the Urquhart algorithm restricts the search space for a given edge to only

its two adjacent triangle, which is not sufficient to ensure the Relative Neighbor con-

dition. Thus, this can lead to additional edges in the Urquhart Graph which ensures

that UrquhartGraph ⊆ RelativeNeighborhoodGraph. But owing to the rare prob-

ability of the occurrence of such a scenario, especially in the case of randomized sam-

pling, Urquhart Graph provides an excellent approximation of the Relative Neighbor-

hood Graph. Thus, for computational purposes, Urquhart graph can be used in place

of RNG, because of its smaller time complexity, O(nlogn) as well as the simplicity of

implementation. The algorithm for computation of Urquhart Graph is given below:

Algorithm 3 Urquhart Graph computation

Compute the Delaunay Triangulation for the set V of nodes.
edge← 0[n× n]
for all Triangles u, v, w in the DT do

edge(u, v)← 1
edge(v, w)← 1
edge(u,w)← 1

end for
for all Triangles u, v, w in the DT do

(p1, p2)← max[d(u, v), d(v, w), d(u,w)]
edge(p1, p2)← 0 {p1 and p2 store the vertexes corresponding to longest edge}

end for
return edge

Now we discuss the time complexity of the algorithm. The computation of Delaunay

Triangulation requires O(nlogn) time. It leads to the creation of O(n) triangles. Each

triangle requires O(1) processing time. So overall, the complexity is dominated by DT

computation, and is O(nlogn). This is significantly faster compared to the second al-

gorithm for RNG computation, which is O(n2). Thus, with the margin of some error,

the Urquhart Graph is a simple and fast implementation of the RNG. The margin of

error using Monte-Carlo simulations is done next.

3.3.1 Margin of Error

Below is an illustration of the Relative Neighborhood Graph and the Urquhart Graph

generated for a random set of 100 points. For the Urquhart Graph, the additional

edges are represented by red lines, in addition to the blue lines in the original RNG.

There are a total of 245 edges in the RNG as shown in Figure 3.4, while the number

of edges in the UG is only 4 more, i.e., 249, as shown in Figure 3.5. This corresponds

to an error close to 1.6%.
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Figure 3.4: Illustration of Relative Neighborhood Graph

Figure 3.5: Illustration of Urquhart Graph

Monte Carlo Simulation were performed, ranging from few vertexes to thousands, and

RNG and UG were generated for both. The difference in the number of edges were

computed and the results plotted in logarithmic scale, mainly to highlight the lower

error that is associated with small number of vertexes. The results are illustrated in

Figure 3.6.
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Figure 3.6: Illustration of RNG approximation by UG

As seen by the results, the number of extra edges in Urquhart Graph is only a small

fraction of the total number of edges in the Relative Neighborhood Graph, and is ap-

proximately 2% for large number of vertexes. An interesting thing to note from the

graph in Figure 3.6 is that for the number of vertexes less than 30, the difference be-

tween RNG and UG is rare, and they are exactly the same most of the times. This is

important in the next subsection, where the Urquhart Graph will be calculated locally,

and given that only a small number of nodes will surround any given sensor, the local

computation of the Urquhart Graph will often be exactly the same as RNG.

3.3.2 Local Computation of UG

There are two main reasons which vouch for a technique for local computation of the

Urquhart Graph:

• While the sensors are moving in the field with an aim to cover the desired tar-

get, the position of the nodes will change. This inevitably changes the inter

nodal distances, and thus, the relative neighbor condition for many of the sen-

sors. These changes must be incorporated into the existing UG, to create an up-

dated one.
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• The centralized algorithm as discussed will not work once the sensors have been

deployed in the field, as they lose direct contact with the base station. Rely-

ing on the base station indirectly through message passing is a costly affair and

should not be followed. A better alternative is to have an algorithm which allows

for the UG to be computed locally, in a distributed manner.

The local computation of the Urquhart Graph must be carried out in such way that

each node can calculate the edges coming out of it, using only the information avail-

able to it locally. The category of nodes which can contribute to this local information

are those which lie inside the communication radius.

Figure 3.7: Neighborhood of a local sensor

There are a few points to consider here in Figure 3.7. Let us think from the perspec-

tive of the Relative Neighborhood Graph as the Urquhart Graph can be considered

nothing more than a fast computation of the former. Consider the sensor in focus,

u, which is locally computing its edges in the RNG. One thing that is given is that

any vertex connected to u lies inside its communication radius. Also, since any edge

that emanates out of u satisfies the relative neighborhood condition, whether an edge

should be formed with a point v that lies inside the communication radius of u, can

be confirmed by checking the Relative Neighbor condition only on all points w that lie

inside the communication radius of u. Thus, all edges that can be formed by u which

satisfy the relative neighbor condition can be computed only using the local informa-

tion of u.
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Now consider the points p and q that lie inside u’s communication radius, and r, which

does not. r violates the relative neighbor condition of p and q, thus not allowing an

edge to form between them in the global RNG. However, when u computes the lo-

cal RNG for the set of points in its communication range, it will form an edge be-

tween them. This is contradictory, which proves that when a local sensor computes

the RNG, the local graph has no accountability for any edges other than those which

emanate from the local sensor itself. So, the basic idea of the distributed algorithm is,

to compute the local RNG for the given sensor, and then keep only those edges which

are connected to the local sensor.

Algorithm 4 Local Urquhart Graph for node u

Vu ← {v ∈ V | d(u, v) ≤ ru} {ru is u’s communication radius}
k ← |Vu|
edge← 0[k × k]
Compute the Delaunay Triangulation for the set Vu of nodes.
for all Triangles a, b, c in the DT do

edge(a, b)← 1
edge(b, c)← 1
edge(a, c)← 1

end for
for all Triangles a, b, c in the DT do

(p1, p2)← max[d(a, b), d(b, c), d(a, c)]
edge(p1, p2)← 0 {p1 and p2 store the vertexes corresponding to longest edge}

end for
edgeu ← edge[u, 1...k]
return edgeu

This algorithm runs is O(klogk) time, where k is the number of nodes inside the com-

munication radius of u.

3.4 Deployment Algorithm

The deployment process starts with all the sensors inside the base station. It has a

centralized node, and initially all the sensors are within its communication radius and

can communicate with it directly. This allows the base station to do some preprocess-

ing. Initially, all the nodes are within the communication range of the base station,

which indirectly implies that they are also within the communication range of one an-

other. Thus the base station lays out the RNG (or UG) for the entire set, connecting

all the nodes. Also, the base station has the knowledge of the location of the Point of

Interest, which it imparts to all the sensors.

The number of sensors to be released can easily be precomputed based on the dis-

tance of the PoI. The number of sensors should be enough to maintain the link from
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the base station to the PoI. Once the preprocessing is done, sensors are deployed out

into the field, and they lose contact with the base station, and henceforth, need to

make computations and take decisions on their own. So, the deployment should be

distributed in nature. Also, it needs to be asynchronous, for the lack of a global clock

for the system.

Once the sensors are deployed, each sensor carries out a set of tasks in making its

move. First, it calculates the local Urquhart Graph, to update the edges that emanate

from it. Next, among the nodes directly connected to it, searches for the one farthest

from it. Then, it takes a decision for movement, while ensuring that the link between

it and the farthest node connected to it is not broken. If this condition is ensured, the

direction can be anything. For making the process fast though, it is most beneficial if

the nodes move directly towards the PoI.[14] The maximum distance that the nodes

are allowed to move can be seen from the Figure 3.8:

Figure 3.8: Movement Vector for node u

As seen from the figure, let us say that u is the node in focus, which has to take its

movement decision. v is the node farthest to it, its distance given by dmax. ru is node

u’s communication radius, and if d′ is the new distance between the nodes u and v,

then d′ ≤ ru is a necessary condition. Using cosine rule, we can write:

d′ =
√

d2 + d2max − 2 · d · dmax · cosA

Using d′ ≤ ru, and the fact that d′ attains its maximum for A = 180◦, we get:

√
d2 + d2max + 2 · d · dmax ≤ ru

d+ dmax ≤ ru

d ≤ ru − dmax
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Thus, the maximum distance that a node can travel is ru−dmax where dmax is the dis-

tance of the farthest node that u has an edge with. It should be noted that this is not

a tight bound, but a general bound keeping the displacement independent of direc-

tion of the movement, i.e., irrespective of any direction the sensor moves, if it doesn’t

travel a distance more than this, it will remain connected to every node it was pre-

viously attached to. It can be noted that it is most beneficial for if the sensors move

directly towards the PoI. This allows them to cover distance from the PoI as fast as

possible, and stretches the graph towards the PoI. With all this, the algorithm for the

deployment process can be laid out now. The PoI is covered when at least one of the

sensors has the PoI within its sensing range.

Algorithm 5 Deployment process for single PoI

n← ⌈∥−→t ∥/r⌉ {r is the commom communication radius}
Base station computes the Urquhart Graph using Algorithm 3
PoI is located at

−→
t

while PoI is not covered do
Select a sensor u at random {u is located at −→u }
u updates its local edges of the Urquhart Graph using Algorithm 4
Vu ← {v ∈ V | d(u, v) ≤ ru}
k ← |Vu|
dmax ← 0
for all v=1,2,...,k do

dmax ← max[dmax, d(u, v)]
end for
disp← (ru − dmax − ϵ) {ϵ is a small number}
−→
dir ← (

−→
t −−→u )

−−→mov ← disp×
−→
dir/∥

−→
dir∥

end while

3.4.1 Simulation

Figure 3.9 shows the result of the simulation of the above algorithm. The algorithm

allots 14 sensors for a PoI located at (16, 18). The communication radii of the sensors

is taken as 2. Sensing radii of the sensors is set at 1. The algorithm is initialized by

placing all the sensors within the communication radius of the base station, which acts

as a central node and defines the initial graph structure over the nodes. Once that is

done, the sensors move out and deploy themselves according to Algorithm 5.

There are two practical issues of implementation. First is to avoid infinitesimal move-

ments by the sensors, as the coordinates are in R. To avoid this, a threshold of 0.01

is chosen. If the displacement is below this value, the sensor doesn’t move. The next

issue is of termination of the algorithm. The algorithm terminates when the PoI is

within the sensing range of at least one of the sensors.
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Figure 3.9: Simulation for single PoI coverage

As seen from the figure, the algorithm achieves coverage of the PoI. The sensors have

stretched out with a stretch factor of n− 1, showing the utility of the RNG structure.



Chapter 4

Multiple PoIs

Now that a deployment procedure has been laid out for covering a given Point of In-

terest while maintaining connectivity, the next issue is covering multiple such PoIs.

A simple scheme that can be used for this deployment is just to allot a set of sensors

to each PoI, and treat all PoIs as independent of each other. Though a very simple

approach, this method will require a huge number of sensors, and that grows propor-

tionally with the distance of the PoI from the base station. So, such a näıve method

should not be used.

An approach that attempts to reduce the number of sensors is club them, i.e., propa-

gate a common chain of sensors up to a distance, and then spread them out to cover

each of the individual PoIs. An important criterion to consider here is that sensor

nodes are highly energy constrained, running on limited battery power, and can not

cover a large distance to achieve the objective. An important objective of the mecha-

nism design is to reduce the maximum distance that any sensor has to travel in order

to cover all the PoIs. Formally this can be defined as:

Let ρ = max(
∑

disp(ui)
∥p(t)∥2

) ∀i ∈ sensors, where ui is a sensor i covering any target t

and p(x) denotes the position of x in 2D plane. ρ this denotes the ratio of maximum

distance traveled to displacement for covering any target by a sensor. The aim of the

design is to reduce ρ as much as possible, as this ensures that a sensor reduces the

distance it has to travel as much as possible, thus conserving power.

An interesting point to note is that in the näıve schematic discussed earlier, ρ is 1,

which is the smallest value it can take. This is because the sensors treat PoIs inde-

pendently, and travel in a straight line towards an individual PoI, making distance

the same as displacement. This scheme, though energy efficient, increases the cost in

terms of number of sensors. So we tend to search for techniques that result in a trade

31
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off between the two, i.e., reduce the number of required sensors drastically at the cost

of spending some more power.

4.1 Centroid based Coverage Scheme

As discussed in the previous section, in the approach to club the sensors, a point needs

to be chosen up to which the sensors are commonly propagated. As proposed in [14],

that point is chosen to be the centroid of the given set of targets in the 2D plane. As

proposed in the technique, a group of sensors are firstly propagated to the centroid,

from where they spread out to cover each of the individual PoIs. This information can

be fed into the sensors during the preprocessing stage. The number of required nodes

is given by the following equations, assuming there are n targets:

−−−→
tmean = sum(

−→
tj )/n, ∀j ∈ [1, n]

nummean = ⌈∥−−−→tmean∥/r⌉

numj = ⌈∥
−→
tj −

−−−→
tmean∥/r⌉

numtotal = sum(numj) + nummean + 1

Once the number of sensors for the mean, as well as each target is determined. The

deployment is easily carried out in two phases. The first phase is to propagate all

the sensors to the centroid. The next phase is to propagate numj number of sensors

to target tj using Algorithm 5 discussed in the previous chapter. The sensor which

reaches the centroid last acts as a pseudo base station (as in it doesn’t move anymore)

for the remaining sensors.

The numj sensors, which are allotted to a particular target, interact within themselves

only. As an example, the sensors allotted to the same target can share a special code,

which they send to their neighbors while communicating, and all messages in which

the code doesn’t match, can be neglected. As a result, all local decisions and updates

are done only based on sensors inside the communication range, and allotted to the

same target. This can be abstracted as a graph coloring.

4.1.1 Simulation

Figure 4.1 shows the result of the simulation of the above algorithm. The algorithm

allots a total of 51 sensors for covering 5 PoIs located at (24, 3), (27, 8), (4, 16), (27, 29)

and (19, 29). The mean is located at (20, 17). All of these sensors go towards the cen-

troid and 8, 6, 9, 7 and 6 sensors are respectively allotted to the targets from there on.
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The communication radii of the sensors is taken as 2 while the sensing radii as 1. As

seen from the figure, the algorithm achieves the coverage of all PoIs.

Figure 4.1: Simulation for multiple PoI coverage through Centroid scheme

4.1.2 Performance Analysis

Apparently, this technique reduces the number of required sensors, while increasing

the distance needed to travel to cover a given sensor. Monte Carlo simulations are

performed to determine the average decrease in number of sensors and increase in the

distance. These values serve as a benchmark for the k-means clustering based scheme

proposed in the next section. Figure 4.2 shows the comparison between the number of

sensors required by the centroid scheme to that by the näıve one.

A linear regression performed on the data results in the straight line y = 0.5x + 50.

The coefficients of this line are given by w = (ϕTϕ)−1ϕTY , where ϕ = [X 1], X

being the column of data for näıve scheme, and Y being the data for centroid scheme.

1 simple represents a column vector of all 1s. This shows that for deployment schemes

where the number of required sensors is more than the order of hundred, the centroid

scheme requires lesser sensors than the näıve one on average.

The Monte Carlo simulation for the maximum relative distance between the centroid

and näıve scheme results in a mean factor of 2.6, which shows that the some sensor in

the centroid scheme might have to travel up to 2.6 times what it has to in the näıve

one on average. The proposed scheme in the next section aims to improve both these
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Figure 4.2: Number of sensors required by centroid scheme

parameters, i.e., reduce the number of sensors required, as well as the maximum rela-

tive distance needed to travel.

4.2 K-Means based Coverage Scheme

4.2.1 The K-Means Clustering Algorithm

A widely used technique for clustering points based on their Euclidean distance, is the

K-Means clustering algorithm. It is an algorithm for unsupervised learning, and ini-

tializing with K means, recursively adjusts the locations of the means as to minimize

the distance of any point from the mean of its cluster. Alternatively, it is said to mini-

mize the sum of squared error, which is a popular choice for measuring the error. The

algorithm is laid out below:

Since the initialization of the cluster means plays an important role on the result of

the algorithm and bad initialization can lead to cluster formations without any nodes,

a safe technique to counter this is to initialize the cluster means at k of the existing

nodes. This results in at least one node being assigned to the cluster.

A major problem encountered in the K-Means clustering, is choosing the value of k,

which basically affects the entire performance of the algorithm. Although there is no

well defined procedure for choosing the value of k, usually, the aim is to select a k,
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Algorithm 6 The K-Means Clustering Algorithm

X = [x1, x2, x3, ..., xn] are the set of points
k cluster means are chosen from the given points, denoted by V
for all i ∈ X do

if ∥xi − vj∥ is minimum among all j ∈ v then
clusteri ← j

end if
end for
cost← 0
for all i ∈ X do

for all j ∈ V do
cost← cost+ ∥xi − vclusteri∥

end for
end for
while costnew − costold > 0 do

costold ← cost
for all i ∈ X do

if ∥xi − vj∥ is minimum among all j ∈ v then
clusteri ← j

end if
end for
for all j ∈ V do

vj ← 0
count← 0
for all i ∈ X do

if clusteri = j then
vj ← vj + xi
count← count+ 1

end if
vj ← vj/count

end for
end for
costnew ← 0
for all i ∈ X do

for all j ∈ V do
costnew ← costnew + ∥xi − vclusteri∥

end for
end for

end while

which minimizes the cost function. This is generally done by running the K-Means

algorithm for a range of k, calculating the cost function for each of them and choosing

the value of k that causes the largest dip in the cost function. A slight variation to

this approach has been used in this application, as discussed below.
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4.2.2 Coverage scheme

The selection of the clusters is done using the K-Means clustering, using the criteria

for the selection of k as the number of sensors required. The value of k is chosen as

to minimize the number the required sensors. The criteria is not set as the relative

distance ρ, as this value can be reduced down to as low as 1, and will correspond to

the näıve scheme. On the other hand, number of required sensors is large for näıve

scheme, from where it falls, and again increases for centroid scheme. So, this algo-

rithm aims to find that minimum value. The process for clustering the sensors is laid

below:

Algorithm 7 Cluster Allocation

sensors← 0[⌈n/3⌉]
for k = 1 to ⌈n/3⌉ do

indicatork ← 0[n× k]
Run K-Means algorithm with current k
for all i = 1, ..., n do

for all j = 1, ..., k do
indicatork[i, j]← 1

end for
end for
for all j = 1, ..., k do

sensors[k]← sensors[k] + ⌈∥−−−−→meanj∥/r⌉
for all i = 1, ..., n do

if indicatork[i, j] = 1 then
sensors[k]← sensors[k] + ⌈∥−−−−−→sensori −−−−−→meanj∥/r⌉+ 1

end if
end for

end for
end for
for j = 1, ..., k do

if sensors[j] = min(sensors) then
return indicatorj

end if
end for

Once the clusters are allocated to the targets, sensors are deployed, treating each clus-

ter independently. This can be considered as a mixture of the previous two approaches,

where a set of sensors are dedicated for each cluster, which propagate from the base

station. Once the sensors reach their cluster mean, the sensor arriving last is declared

as a pseudo base station in the sense that other sensors emanate from it, and go on to

cover each of the targets in that cluster. Thus it also consists of two phases, like in the

centroid scheme. Next, the simulation of the algorithm is done.
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4.2.3 Simulation

Figure 4.3 shows the simulation of the K-Means based coverage scheme. The clus-

ters are formed at (8, 43), (26, 25) and (42, 11). A total of 122 sensors are deployed,

which propagate to the cluster means, and from there, to the individual targets. As

seen from the figure, the algorithm achieves coverage of all PoIs.

Figure 4.3: Simulation for multiple PoI coverage through K-Means scheme

4.2.4 Performance Analysis

Comparing to the performance of the centroid scheme, this method improves in both

the aspects, it reduces the total number of sensors required, and the maximum dis-

tance that a sensor has to travel to cover a target is also lesser for this scheme on av-

erage compared to the centroid one. Monte Carlo simulations are performed to check

both the aspects.

The result for the comparison of number of sensors required in the two schemes is

shown in Figure 4.4. Performing a similar linear regression on this results in the line

y = 0.75x + 25, which again means that when the number of sensors in the order of

hundred, the K-Means scheme performs better than the centroid one on average, in

terms of the number of sensors required.

The simulation result for comparison of the relative distance for both the schemes is

shown in Figure 4.5. A regression is not performed as the data points diverge fast, and
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Figure 4.4: Number of sensors required by K-Means scheme

a straight line is not a good approximation, however, the red line which depicts the

y = x line always stays above the data points, indicates that the maximum distance

that the sensors have to travel in the case of K-Means is almost always lesser than in

the case of centroid scheme.

Figure 4.5: Relative distance for the K-Means scheme
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Thus, for reasonably large fields, where the number of sensors is in the order of hun-

dreds, the K-Means coverage schemes performs well both in the case of number of

sensors required as well as the maximum distance a sensor has to travel in order to

cover a target. It reduces the number of sensors required by approximately 3/4th, and

the max relative distance is always less than that in the case of centroid scheme. So, it

can be inferred that, the sensor allocation to the targets based on K-Means algorithm,

is both cost-effective as well as energy-efficient.



Chapter 5

Conclusion

The report was organized in the following manner. It started with the description of

the sensor network model. It defined it as a multi-agent system with an underlying

graph structure. Coverage, which is the focus of this work, was next discussed as an

important performance metric. Various notions of coverage were discussed after this,

of which Area and Target Coverage are of particular importance to this work. Two

major classes of algorithms, centralized and distributed were discussed, and it was ar-

gued that for the case of wireless sensor networks, distributed systems is a more suited

choice as nodes in wireless sensor networks are always prone to failure, so replying on

a central node is not a right choice.

Next, the problems of Area and Target Coverage were dealt with, and the conclusions

from the work are presented below.

5.1 Conclusion from Area Coverage

The idea of potential game was applied to the sensor network, treating it as a multi-

agent system. This allowed for design of local objective functions which led to a de-

sired system-wide behavior. Within limits of marginal error, which occurred due to

the uncertainty in the parameters involved, ϵ and α, the system achieved coverage.

Communication range of the sensors played a part in the speed of convergence; larger

the range, faster the convergence. Also, at convergence, the value vector corresponded

to the set that optimized the objective functions, and the estimation matrix resulted

in all agents having correct estimates of all other nodes.

40
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5.2 Conclusion from Target Coverage

The target coverage problem was specified as covering Points of Interest while main-

taining connectivity. Using a Relative Neighborhood Graph, which is a connected

graph and has a length stretch factor Ω(n), was a suitable choice. Further, its O(n2)

computational complexity was reduced to O(nlogn) by using the Urquhart Graph,

which approximates the RNG with an error margin of 2%. Using this Urquhart Graph,

the deployment process was carried out and coverage for a single PoI was achieved.

For the case of multiple PoIs, a K-Means based clustering was performed, and the

clusters were chosen as to minimize the total number of sensors required. After this,

each cluster was treated independently and covered with a dedicated set of sensors.

This method turned out to be superior than considering the all PoIs as a single set by

reducing the number of required sensors as well as the maximum distance to be trav-

eled by a sensor to cover a PoI.
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